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Classical Brauer reciprocity can be stated roughly as follows: Let G be a finite group and let k be an
algebraically closed field of characteristic p > 0. If S is a simple kG-module and P (S) is its projective cover,
then the multiplicity of a simple module L as a composition factor of a characteristic zero lift of P (S) is the
same as the multiplicity of S as a composition factor of a modulo p reduction of L. (All modules in this
paper are assumed to be finite dimensional.) One thinks of the module L as playing an intermediate role
between P (S) and S.

Reciprocities similar to Brauer reciprocity (here called“Brauer-type reciprocities”) have subsequently been
found to occur in many other settings. For instance, if g is a classical (modular) Lie algebra (definition given
in §2), then there exists a set Z of g-modules with the following property: Given a simple g-module S,
the projective cover P (S) of S has a filtration with each successive quotient (isomorphic to a module) in
Z and for each such filtration, the number of times Z ∈ Z occurs is the same as the multiplicity of S as a
composition factor of Z. This was proved for g of type A1 by Pollack ([10]) and for arbitrary g by Humphreys
([3]). (The reciprocity in this setting is often called “Humphreys reciprocity.”)

Inspired by Humphreys’ result, Bernstein, Gelfand and Gelfand sought and found a Brauer-type reciprocity
(“BGG reciprocity”) in a certain “truncated” category (their category “O”) of modules for a complex
semisimple Lie algebra (see [1]). Later, this was generalized by Mirollo and Vilonen ([8]) to the category of
perverse sheaves on a complex analytic space.

In [7] Jantzen used techniques of Bernstein, Gelfand and Gelfand to prove a Brauer-type reciprocity in
the category of modules for the hyperalgebra of the nth Frobenius kernel of a semisimple algebraic group
scheme.

Other settings for Brauer-type reciprocities as well as axiomatic approaches can be found in [2], [4] and
[11].

In this paper we list some assumptions on a finite dimensional graded associative algebra and prove a
Brauer-type reciprocity in the category of its modules as well as in the category of its graded modules. To
prove that each projective module has a filtration as above, it is first shown that a projective module has
the structure of a graded module. The desired filtration is then constructed in the graded category (the
grading being crucial for the method used). As special cases, we recover the reciprocities of Humphreys and
Jantzen and we obtain new results for finite dimensional graded restricted Lie algebras (the study of which
prompted the investigations leading to this paper). Techniques from [4], [6] and [7] have been used in some
of the proofs below.

1. Graded algebras and graded modules

Let A =
∑

i∈ZAi be a finite dimensional graded algebra over a field k and let GA (resp. G′A) denote
the category of finite dimensional graded left (resp. right) A-modules. (For definitions and basic theory of
graded rings, see [9].)

If B is a graded subalgebra of A and N ∈ obGB, then A ⊗B N ∈ obGA with the ith homogeneous
component (A ⊗B N)i defined as the k-span of all a ⊗ n with a ∈ Aj and n ∈ Ni−j . If M ∈ obGA and
f ∈ HomGB(N, M), then the induced homomorphism f̄ : A⊗B N → M given by f̄(a⊗n) = af(n) is graded.

Let M ∈ obGA. Then M∗ := Homk(M, k) is an object of G′A with the definitions (fa)(m) = f(am)
(a ∈ A, f ∈ M∗, m ∈ M) and (M∗)i = { f ∈ M∗ | f(Mj) = 0 for all j 6= −i }.
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If A has an antiautomorphism t which is antigraded (meaning t(Ai) ⊆ A−i), then the vector space M∗

becomes a graded left A-module, denoted M t, with the definitions (af)(m) = f(t(a)m) (a ∈ A, f ∈ M t,
m ∈ M) and (M t)i = { f ∈ M t | f(Mj) = 0 for all j 6= i }.

The ith suspension M(i) of M is by definition the A-module M with new grading (M(i))j = Mi+j .
Let MA (resp. M′A) denote the category of left (resp. right) A-modules. The forgetful functor from

GA to MA (resp. G′A to M′A) will be denoted F . Since the projective objects of GA are precisely the
summands of free objects (= direct sums of various suspensions of A), it follows that FP is projective
whenever P is.

Since several of the results (and their proofs) below are valid for both graded and non-graded modules,
it will be convenient to refer to either by using the notation CA (resp. C′A) with C a fixed, but arbitrary,
element of {G,M}. For M, S ∈ obCA with S simple, (M : S) will denote the multiplicity of S as a
composition factor of M .

The following slight variations on standard results will be needed.

1.1 Theorem. Let B be a graded subalgebra of A and assume that A is flat as an object of both CB and
C′B. Let M,M ′ ∈ obCA and let N ∈ obCB. For each n ∈ Z+ we have

(1) Extn
CA(M, M ′) ∼= Extn

C′A(M ′∗,M∗),
(2) Extn

CA(A⊗B N, M) ∼= Extn
CB(N, M) and

(3) Extn
CA(M, (N∗ ⊗B A)∗) ∼= Extn

CB(M,N)
and the isomorphisms are natural in the variables M , M ′ and N .

Proof. The standard proofs of (1) and (2) carry over to the graded situation. For (3), use (1) and (2) to get

Extn
CA(M, (N∗ ⊗B A)∗) ∼= Extn

C′A(N∗ ⊗B A,M∗)
∼= Extn

C′B(N∗,M∗)
∼= Extn

CB(M, N),

as desired. ¤

2. Assumptions

The following will be assumed for the rest of the paper.

2.1. A =
·∑

i∈ZAi is a finite dimensional graded (associative) algebra (with identity) over an algebraically
closed field k with graded subalgebras (containing 1A) A− ⊆ k · 1A +

∑
i<0 Ai, A0 ⊆ A0 and A+ ⊆ k · 1A +∑

i>0 Ai such that

(i) A = A−A0A+,
(ii) dimk A = dimk A− dimk A0 dimk A+ and
(iii) A−A0 = A0A− and A0A+ = A+A0.

Examples. 1. An arbitrary finite dimensional algebra A over k possesses a trivial grading A0 = A and,
with the assignments A0 = A0 and A− = k · 1A = A+, satisfies (2.1). This is a somewhat trivial example
and the findings of this paper give no information about A in this case. However, it is still a good example
to keep in mind when trying to formulate properties that hold for arbitrary A satisfying (2.1).

2. Let A be as in (2.1). Assume A has a graded subalgebra B and set B− = A− ∩ B, B0 = A0 ∩ B and
B+ = A+ ∩B. If either B = B−B0B+ or dimk B = dimk B− dimk B0 dimk B+, then B satisfies (2.1) (with
A replaced by B).

For the remaining examples, k has characteristic p > 0.
3. Let g =

∑
i∈Z gi be a finite dimensional graded restricted Lie algebra over k. The restricted enveloping

algebra A of g is, by definition, the quotient of the universal enveloping algebra of g by the ideal generated
by all Xp −X [p] with X ∈ g. If Xi is a basis for gi, then A has a basis consisting of the cosets of products
of the form

∏
i

∏
X∈Xi

Xn(i,X), with 0 ≤ n(i, X) < p, where the second product is with respect to a fixed
ordering on Xi (see [5]). Let Ai be the k-span of all those basis elements with

∑
j,X n(j, X)j = i. Then the

Ai are homogeneous components for a grading on A. Furthermore, if A−, A0 and A+ are the k-spans of
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those basis elements with n(i,X) = 0 for all i ≥ 0, i 6= 0 and i ≤ 0, respectively, then with these definitions,
A satisfies (2.1).

4. Let gC be a simple finite dimensional complex Lie algebra. If Φ is the set of roots of gC relative to a
fixed Cartan subalgebra hC, then gC has a basis {Xα,Hi | α ∈ Φ, 1 ≤ i ≤ dimC hC } (a “Chevalley basis”)
the Z-span gZ of which is closed under the bracket product. The vector space gZ⊗k with the induced bracket
product is a (restricted) Lie algebra called a “classical Lie algebra.” Set g0 = hZ⊗ k, where hZ is the Z-span
of the Hi, and let gi (i 6= 0) be the k-span of all Xα ⊗ 1 with ht(α) = i, where ht(α) is the height of α
relative to a fixed choice of simple roots. Then g is a graded Lie algebra with ith homogeneous component
gi. The preceding example shows how to define a structure on the restricted enveloping algebra of g in such
a way that (2.1) is satisfied.

5. A finite dimensional restricted Lie algebra of Cartan type (or more generally, the p-hull of a not
necessarily restricted such algebra) has a natural grading which (by example (3) again) yields a structure
on the restricted enveloping algebra satisfying (2.1). (For the definition and properties of Lie algebras of
Cartan type, see [12] or [13].)

6. Let A be the hyperalgebra of the nth Frobenius kernel of a semisimple algebraic group scheme over k.
This algebra has a basis consisting of monomials of the form

∏

α∈Φ−
Xα,rα

∏̀

j=1

Hj,tj

∏

β∈Φ+

Xβ,rβ

with 0 ≤ rγ , tj < pn. Here Φ+ (resp. Φ−) is the set of positive (resp. negative) roots with respect to a fixed
set of simple roots ∆ and the products are with respect to a fixed ordering. Set Φ = Φ− ∪ Φ+ and let Ai

be the k-span of all monomials with
∑

γ∈Φ rγht(γ) = i where ht is the height function on Φ relative to ∆.
Then A is a graded algebra with ith homogeneous component Ai. Moreover, if A0 is the k-span of those
monomials with rγ = 0 for all γ ∈ Φ and A+ (resp. A−) is the k-span of those monomials with tj = 0 for all
j and rγ = 0 for all γ ∈ Φ− (resp. γ ∈ Φ+), then A, with these definitions, satisfies (2.1).

3. Simple objects of CA and their projective covers

Set B+ = A0A+ and B− = A−A0. By assumption (2.1(iii)) these are (graded) subalgebras of A.

3.1 Lemma. If M ∈ obCB+, then A⊗B+ M ∼= B− ⊗A0 M in CB−.

Proof. The CA0-isomorphism M → 1⊗M ⊆ A⊗B+ M induces a CB−-morphism B− ⊗A0 M → A⊗B+ M
which is clearly surjective. By assumptions (2.1(i) and (ii)) A is a free right B+-module and B− is a
free right A0-module, the rank of each being dimk A−. Therefore, dimk A ⊗B+ M = dimk A− dimk M =
dimk B− ⊗A0 M and the lemma follows. ¤

The sets N+ =
∑

i>0(B
+)i and N− =

∑
i<0(B

−)i are graded ideals of B+ and B−, respectively. Since
B+/N+ ∼= A0 ∼= B−/N−, the category CA0 embeds in CB+, as well as in CB−, as a full subcategory.
Moreover, since N+ and N− are nilpotent, the simple objects of these three categories coincide. Let ΛC be
a fixed set of isomorphism class representatives of these simple objects.

For each λ ∈ ΛC, define M(λ) = A⊗B+ λ. (3.1) and (1.1) imply that, for each µ ∈ ΛC,

HomCB−(M(λ), µ) ∼= HomCB−(B− ⊗A0 λ, µ) ∼= HomCA0(λ, µ)

which is isomorphic to k if λ ∼= µ and zero otherwise. It follows that M(λ) has a unique simple quotient
L(λ) in CA.

3.2 Lemma. {L(λ) | λ ∈ ΛC} is a complete set of pairwise nonisomorphic simple objects of CA.

Proof. Let S be a simple object of CA. For some λ ∈ ΛC there exists a CB+-monomorphism λ → S. The
image of the induced CA-morphism M(λ) = A⊗B+ λ → S is a nonzero subobject of S and hence equal to
S; that is, S ∼= L(λ).

Since L(λ) has unique simple quotient λ in CB− (as follows from the paragraph preceding the lemma),
the objects are pairwise nonisomorphic. ¤



4 RANDALL R. HOLMES DANIEL K. NAKANO

For ν ∈ ΛM and i ∈ Z, let ν(i) denote the graded A0-module with underlying A0-module ν and grading
ν(i)j = δijν. Evidently, {ν(i) | ν ∈ ΛM, i ∈ Z} is a complete set of pairwise nonisomorphic simple graded
A0-modules. Therefore, by adjusting the choice of isomorphism class representatives if necessary, it can be
assumed that ΛG = {ν(i) | ν ∈ ΛM, i ∈ Z}. In particular, the forgetful functor maps ΛG onto ΛM.

Denote the projective cover (in CA0) of λ ∈ ΛC by P (λ). For each λ ∈ ΛG, P (λ) is indecomposable and
hence it has a unique nonzero homogeneous component as each homogeneous component is an A0-submodule.
Therefore, FP (λ) is also indecomposable and projective (see §1), whence FP (λ) ∼= P (Fλ).

Denote the projective cover of M ∈ obCA by P (M).

3.3 Theorem. For each λ ∈ ΛG, FL(λ) ∼= L(Fλ) and FP (L(λ)) ∼= P (L(Fλ)).

Proof. First note that M(µ(i)) ∼= M(µ)(i) and FM(µ) ∼= M(Fµ) for each µ ∈ ΛG and i ∈ Z. Therefore,
L(µ(i)) ∼= L(µ)(i) and L(Fµ) is a homomorphic image of FL(µ).

Now, for each λ ∈ ΛC, set I(λ) = A ⊗A0 P (λ). By (1.1), the functor HomCA(I(λ), ·) is naturally
isomorphic to the functor HomCA0(P (λ), ·) which is exact, implying that I(λ) is projective. Moreover, for
each λ ∈ ΛC and L ∈ obCA,

dimk HomCA(I(λ), L) = dimk HomCA0(P (λ), L) = (L : λ).

Therefore, for each λ ∈ ΛG,
∑

µ∈ΛG

dimk HomGA(I(λ), L(µ)) =
∑

µ

(L(µ) : λ)

=
∑

ν∈ΛM
i∈Z

(L(ν(i)) : λ)

=
∑

ν,i

(L(ν(0)) : λ(−i))

=
∑

ν

(FL(ν(0)) : Fλ)

≥
∑

ν

(L(ν) : Fλ)

=
∑

ν∈ΛM

dimk HomMA(I(Fλ) : L(ν)).

The first sum counts the number of indecomposable summands of I(λ) while the last counts that of I(Fλ) ∼=
FI(λ). Generally, the former is less than or equal to the latter, so the computation shows that these numbers
are in fact equal. In particular, (FL(ν(0)) : Fλ) = (L(ν) : Fλ) for each ν ∈ ΛM, λ ∈ ΛG. Thus, if µ ∈ ΛG,
then µ = ν(i) for some ν ∈ ΛM, i ∈ Z, and FL(µ) = FL(ν(i)) ∼= FL(ν(0))(i) ∼= L(ν) = L(Fµ). This proves
the first statement.

For the second statement observe that

HomGA(I(λ), L(λ)) ∼= HomGA0(P (λ), L(λ)) 6= 0

which implies that P (L(λ)) is a summand of I(λ). The computation above shows that FP (L(λ)) is inde-
composable, and since this module has FL(λ) as a homomorphic image the theorem follows. ¤

4. Z-filtrations

For λ ∈ ΛC set Z(λ) = A⊗B+ P (λ) and Z−(λ) = (λ∗ ⊗B− A)∗.

4.1 Lemma. Z(λ) is the projective cover in CB− of λ ∈ ΛC.

Proof. By (3.1), Z(λ) is projective when viewed as an object of CB−. Moreover, for each µ ∈ ΛC, (1.1)
gives

HomCB−(Z(λ), µ) ∼= HomCA0(P (λ), µ)

which is isomorphic to k if λ ∼= µ and zero otherwise. Therefore, λ is the unique simple quotient of Z(λ) as
required. ¤
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4.2 Lemma. Extn
CA(Z(λ), Z−(µ)) is isomorphic to k if n = 0 and λ ∼= µ, and it is zero otherwise.

Proof. By (1.1) Extn
CA(Z(λ), Z−(µ)) ∼= Extn

CB−(Z(λ), µ). If n > 0 this space is zero as Z(λ) is projective
in CB− by (4.1). If n = 0 this space is isomorphic to HomCB−(B− ⊗A0 P (λ), µ) ∼= HomCA0(P (λ), µ) (see
(3.1)) and the lemma follows. ¤

An object M of CA is said to have a Z-filtration if it has a filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Ms = M by
subobjects Mj such that for each j > 0, Mj/Mj−1

∼= Z(λ) for some λ ∈ ΛC. The following corollary shows
that the number [M : Z(λ)] := |{j | Mj/Mj−1

∼= Z(λ)}| is independent of the choice of Z-filtration.

4.3 Corollary. If M ∈ obCA has a Z-filtration, then (with the notation as above)

[M : Z(λ)] = dimk HomCA(M, Z−(λ))

(λ ∈ ΛC).

Proof. This follows easily from (4.2) by using induction on s. ¤

As a consequence of (4.1), any object of CA having a Z-filtration is necessarily projective when viewed
as an object of CB−. The next theorem shows that the converse holds if C = G.

4.4 Theorem. If an object of GA is projective when viewed as an object of GB−, then it has a Z-filtration.

Proof. Assume that M ∈ obGA is projective in GB−. It follows from the fact that B− is a free object of
GA0 (see (2.1)) that M , and hence each Mi, is projective in GA0. Choose i maximal with Mi 6= 0 and write

Mi = P
·
+ Q where P ∼= P (λ) for some λ ∈ ΛG. Let ϕ : Z(λ) → M denote the graded A-homomorphism

induced by the graded B+-isomorphism P (λ) ∼→ P ⊆ M (by maximality of i, N+P = {0} so this is indeed
a B+-homomorphism). Now M ′ := Q +

∑
j<i Mj is a graded B−-submodule of M so the canonical map

π : M → M/M ′ ∼= P (λ) is a graded B−-homomorphism. Since M is projective in GB−, π factors through the
canonical epimorphism Z(λ) → Z(λ)/N−Z(λ) ∼= P (λ) to give a graded B−-homomorphism ψ : M → Z(λ).

It is easy to see that ψϕ ∈ EndGB−(Z(λ)) takes the ith homogeneous component 1⊗ P (λ) of Z(λ) onto
itself and since this component generates Z(λ) as a B−-module it follows that ψϕ is surjective and hence
bijective. In particular, ϕ is injective so that im ϕ ∼= Z(λ) in GA. Moreover, M/ imϕ is isomorphic in
GB− to a direct (graded) summand of M and is therefore projective in GB−. The theorem now follows by
induction on dimk M . ¤

The desired Brauer-type reciprocity for the category CA is now obtained by assembling results.

4.5 Theorem. Any projective object of CA has a Z-filtration. In particular, for each simple object S of
CA, the projective cover P (S) of S has a Z-filtration and [P (S) : Z(λ)] = (Z−(λ) : S) for each λ ∈ ΛC.

Proof. By (3.3), any projective object of MA is of the form FP where P is a projective object of GA.
Moreover, for each λ ∈ ΛG, FZ(λ) ∼= Z(Fλ), so that FP has a Z-filtration if P does. Hence, for the first
statement it may be assumed that C = G. Now, any projective object of GA is projective in GB− as A is
a free object of GB− (a consequence of (2.1)), so the first statement follows from (4.4).

Finally, (4.3) applies and the proof is complete. ¤

5. A Special Case

The presence of the two different intermediate modules Z(λ) and Z−(λ) in the reciprocity formula of
(4.5) produces an asymmetry which is not found in many Brauer-type reciprocity formulas. In the follow-
ing proposition a reciprocity involving a single intermediate module is obtained under the assumption of
additional constraints on A.

5.1 Theorem. Assume that, in addition to (2.1), A satisfies the following:

(1) A0 is semisimple and
(2) A has an antigraded antiautomorphism t of order two such that t(B+) = B− and λt ∼= λ for each

λ ∈ ΛM.
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Then [P (S) : Z(λ)] = (Z(λ) : S) for each λ ∈ ΛC and each simple S ∈ obCA.

Remark. Since t(A0) = t((B+)0) = (B−)0 = A0, t restricts to an antiautomorphism of A0 so that the
module λt is defined.

Proof. The first step is to show that St ∼= S for each simple object S of CA, and for this it may be assumed,
by (3.3) and the fact that the forgetful functor F maps ΛG onto ΛM, that C = G and S = L(λ) for some
λ ∈ ΛG. Since M 7→ M t is an exact functor, St is simple, so St ∼= L(µ) for some µ ∈ ΛG.

Now, if ν ∈ ΛG, then ν has a single nonzero homogeneous component, say ν = νi, and from the con-
struction of the simple module L(ν), it follows that L(ν)j = {0} for j > i and that L(ν)i

∼= ν in GA0.
Consequently, if λ = λi, then λ ∼= λt ∼= (St)i

∼= L(µ)i
∼= µ in GA0. Hence µ = λ and St ∼= S.

Next, it is easy to check that the map ϕ : (λ∗ ⊗B− A)∗ → (A ⊗B+ λt)t given by ϕ(f)(a ⊗ α) = f(α ⊗
t(a)) (f ∈ (λ∗ ⊗B− A)∗, a ∈ A, α ∈ λt) is a well-defined CA-monomorphism. Furthermore, the dimension
of the first module is dimk λ dimk A+ while that of the second is dimk λ dimk A−. Since these dimensions are
the same, ϕ is an isomorphism. Finally, P (λ) ∼= λ by semisimplicity of A0, so that Z−(λ) = (λ∗ ⊗B− A)∗ ∼=
(A ⊗B+ λt)t ∼= (A ⊗B+ P (λ))t ∼= (Z(λ))t. The first step together with (4.5) now finishes the proof of the
proposition. ¤

(5.1) can be applied to the situation in example (4) of §2 to recover results of Humphreys in [3]. Here,
A0 is the restricted enveloping algebra of the Cartan subalgebra h = g0 (so A0 is semisimple), t is the
antiautomorphism of A induced by Hi ⊗ 1 7→ Hi ⊗ 1 and Xα ⊗ 1 7→ X−α ⊗ 1, ΛM = h∗ (where λ ∈ h∗

is identified with the one-dimensional A0-module induced by λ), and Z(λ) is Humphreys’ “standard cyclic
module Zλ.”

Similarly, specializing to example (6) of §2 (which is analogous to example (4)) one can recover results of
Jantzen in [7].

It should be pointed out that not all the algebras in the examples of §2 satisfy the additional conditions
of the theorem. For instance, in example (5) if A is the restricted enveloping algebra of the Witt algebra
W (1, 1) (endowed with the usual grading) then dimk B+ = pp−1 while dimk B− = p2.
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